

Level-1

46.(D)
$$\Delta H \neq \Delta E$$
 for $CO(g) + \frac{1}{2}O_2(g) \longrightarrow CO_2(g)$ because $\Delta n_g \neq 0$

- **47.(A)** The amount of heat evolved or absorbed in the formation of one mole of product from its elements. So, the correct answer is $C + O_2$ (1 atm) $\longrightarrow CO_2$ (1 atm).
- 48.(D) The formation of one mole of HCl can be represented as,

$$\frac{1}{2}(H-H) + \frac{1}{2}(Cl-Cl) \longrightarrow H-Cl; \quad \Delta H = -90 \text{ kJ}$$

Hence, for the reaction,

Heat evolved = heat evolved in bond formation – heat required for bond breaking

$$\therefore \qquad 90 \text{ KJ} = \left[\text{H-Cl bond energy} \right] - \left(\frac{1}{2} \times 430 + \frac{1}{2} \times 240 \right)$$

$$\therefore$$
 (H-Cl bond energy) = 90 + (215 + 120) = 425 kJ mol⁻¹

49.(D) Formation of XY is known as: $\frac{1}{2}X_2 + \frac{1}{2}Y_2 \longrightarrow XY$

$$\Delta H = (BE)_{X-X} + (BE)_{Y-Y} - 2(BE)_{X-Y}$$

If (BE) of
$$X - Y = a$$

Then (BE) of
$$(X - X) = a$$

And (BE) of
$$(Y-Y)=\frac{a}{2}$$

∴
$$\Delta H_f(X-Y) = -200 \text{ kJ}$$
 ∴ $-400 \text{ (for 2 mol XY)} = a + \frac{a}{2} - 2a$

$$\Rightarrow \qquad -400 = -\frac{a}{2} \quad \Rightarrow \quad a = +800 \,\text{kJ}$$

The bond dissociation energy of $X_2 = 800 \text{ kJ} \text{ mol}^{-1}$.

$$\begin{array}{c} \text{CH}_3 \\ \text{50.(B)} \quad \text{CH}_3 - \text{CH} - \text{CH}_3(g) + \frac{13}{2} \text{O}_2(g) & \longrightarrow & 4\text{CO}_2(g) + 5\text{H}_2\text{O}(g) \end{array}$$

$$\Delta H = \Delta E + \Delta nRT$$

$$\Delta n$$
 = mole of (gaseous products–gaseous reactants) = +ve

Thus,
$$\Delta H > \Delta E$$

 $\textbf{51.(A)} \quad \text{Enthalpy of formation of H_2SO_4 can be represented by the following equation:} \\$

$$H_2 + S + 2O_2 \longrightarrow H_2SO_4$$

Given,
$$S + O_2 \longrightarrow SO_2$$
, $\Delta H = -298.2 \text{ kJ}$

$$SO_2 + \frac{1}{2}O_2 \longrightarrow SO_3$$
, $\Delta H = -98.7 \text{ kJ}$

$$SO_3 + H_2O \longrightarrow H_2SO_4$$
, $\Delta H = -130.2 \text{ kJ}$

$$\label{eq:H2} {\rm H_2} \, + \, \frac{1}{2} {\rm O_2} \longrightarrow {\rm H_2O}, \qquad \qquad \Delta {\rm H} = -287.3 \ {\rm kJ}$$

On adding all the four equations, we get the equation (i),

Hence,
$$\Delta H_f = (-298.2) + (-98.7) + (-130.2) + (-287.3) = -814.4 \text{ kJ}$$

52.(B) According to question,

$$2Al + \frac{3}{2}O_2 \longrightarrow Al_2O_3;$$
 $\Delta H = -1596 \text{ kJ} \dots \text{(i)}$

$$2\operatorname{Cr} + \frac{3}{2}\operatorname{O}_2 \longrightarrow \operatorname{Cr}_2\operatorname{O}_3; \qquad \Delta H = -1134 \text{ kJ } \dots$$
(ii)

Reversing Equation (ii) and adding both reactions, we get:

$$2Al + Cr_2O_3 \longrightarrow 2Cr + Al_2O_3;$$
 $\Delta H = -462 \text{ kJ}$

53.(C) CH₄ has four C – H bonds. So, 4×416 kJ is required to break CH₄ into C and 4H.

54.(C) We know,
$$\Delta H = \Delta U + \Delta nRT$$

 $\Delta n = [total number of moles of gaseous products] - [Total number of moles of gaseous reactants]$

For this reaction
$$A(s) + 3B(g) \longrightarrow 4C(g) + D(l)$$
 $\Delta n = [4 - 3] = 1$

$$\Delta H = \Delta U + RT$$

55.(D) We know that, $\Delta H = \Delta E + \Delta n_{g}RT$

For reaction, $N_2O_4 \longrightarrow 2NO_2$

$$\Delta n_g = 2 - 1 = 1$$

$$\therefore$$
 $\Delta H = \Delta E + RT$ or $\Delta H > \Delta E$

56.(B)
$$\Delta H = \Delta E + p\Delta V = \Delta E + n_{\sigma}RT$$

$$PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$$

$$\Delta n_g = n_{(p)_g} - n_{(r)_g} = 2 - 1 = 1$$

$$\therefore \qquad \Delta H = \Delta E + 1 \times RT \qquad \qquad \therefore \qquad \Delta H > \Delta E$$

57.(B) The structure of N_2H_4 is as follows

$$H > N - N < H$$

Hence, in the reaction,

$$N_2H_4(g) \longrightarrow 2N(g) + 4H(g);$$

$$\Delta H = (N - N \text{ bond energy}) + (N - H \text{ bond energy} \times 4)$$

$$\therefore$$
 N-N bond energy = 1724 - 1564 = 160 kJ/mol

58.(C) The amount of heat either evolved or absorbed when one gram mole of a substance is formed form its constituent elements, is known as the standard heat of formation (ΔH_f°) .

For standard state temperature is 25°C or 298 K and pressure of gaseous substance is one atmosphere.

59.(A) Heat of decomposition of water is
$$H_2O(g) \longrightarrow H_2(g) + \frac{1}{2}O_2(g)$$
 $\Delta H = \frac{+573.2}{2} = 286.6 \text{ kJ/mol}$

60.(D) Bond energy O – H bond = 109 kcal/mol

 \therefore Energy absorbed in the dissociation of 1 mol of water (H₂O) = 2 × 109 = 218 kcal

: Energy released in the formation of 1 mole of water = 218 kcal.